

EPO-TEK® T7109

Technical Data Sheet
For Reference Only
Thermally Conductive Epoxy

Date: September 2017 Recommended Cure: 150°C / 1 Hour

Rev: V
No. of Components: Two
Mix Ratio by Weight: 10 : 1

Mix Ratio by Weight: 10 : 1
Specific Gravity: Part A: 1.33

Pot Life: 4 Hours

Shelf Life- Bulk: One year at room temperature

Minimum Alternative Cure(s):

May not achieve performance properties listed below

150°C / 10 Minutes 100°C / 4 Hours 80°C / 8 Hours

NOTES:

• Container(s) should be kept closed when not in use.

• Filled systems should be stirred thoroughly before mixing and prior to use.

• Performance properties (rheology, conductivity, others) of the product may vary from those stated on the data sheet when bi-pak/syringe packaging or post-processing of any kind is performed. Epoxy's warranties shall not apply to any products that have been reprocessed or repackaged from Epoxy's delivered status/container into any other containers of any kind, including but not limited to syringes, bi-paks, cartridges, pouches, tubes, capsules, films or other packages

Part B: 1.02

• Syringe packaging will impact initial viscosity and effective pot life, potentially beyond stated parameters.

<u>Product Description:</u> EPO-TEK® T7109 is a two component, thermally conductive epoxy designed for die attach and heat-sinking applications found in the semiconductor, hybrid, medical and optical industries.

Typical Properties: Cure condition: 150°C / 1 Hour Different batches, conditions & applications yield differing results.

Data below is not guaranteed. To be used as a guide only, not as a specification. * denotes test on lot acceptance basis

PHYSICAL PROPERTIES:				
* Color (before cure):		Part A: White	Part B: Amber	
* Consistency:		Smooth paste		
* Viscosity (23°C) @ 20 rpm: 14,000-20		14,000-20,000	cPs	
Thixotropic Index:		1.8		
* Glass Transition Temp:		≥ 45	°C (Dynamic Cure: 20-200°C/ISO 25 Min; Ramp -10-200°C @20°C/Min)	
Coefficient of Thermal Expans	sion (CTE):			
	Below Tg:	46	x 10 ⁻⁶ in/in°C	
	Above Tg:	239	x 10 ⁻⁶ in/in°C	
Shore D Hardness:		83		
Lap Shear @ 23°C:		> 2,000	psi	
Die Shear @ 23°C:		≥ 15	Kg 5,334 psi	
Degradation Temp:		377	°C	
Weight Loss:				
	@ 200°C:	0.02	%	
	@ 250°C:	0.25	%	
	@ 300°C:	0.98	%	
Suggested Operating Temperature:		< 300	°C (Intermittent)	
Storage Modulus:		258,593	psi	
* Particle Size: ≤ 20		≤ 20	microns	

ELECTRICAL AND THERMAL PROPERTIES:			
Thermal Conductivity:	0.7	W/mK (40 mil);	1.5 W/mK (3 mil)
Volume Resistivity @ 23°C:	$\geq 8 \times 10^{12}$	Ohm-cm	
Dielectric Constant (1KHz):	3.50		
Dissipation Factor (1KHz):	0.004		

EPO-TEK® T7109

Technical Data Sheet
For Reference Only
Thermally Conductive Epoxy

EPO-TEK® T7109 Advantages & Suggested Application Notes:

- Reliability report available describing its performance; see Technical Paper #42 http://www.epotek.com/technical-papers.asp
 - Thermal resistance compared to three other epoxies.
 - o Thermal resistance and how it relates to overall thermal conductivity.
 - Strength measurements plotted versus pot-life, versus Tcycles and damp heat (85°C/85%RH).
- Thixotropic paste allows for application by automatic dispensers or screen printers. It can also be applied by hand or spatula.
- Excellent adhesion to Aluminum, ferrous and non ferrous metals, and most plastics including Kapton.
- Suggested applications:
 - Semiconductor Thermally conductive underfill / Electrically non conductive dieattach, low stress for large die exceeding 500 mil x 500 mil.
 - Hybrid Micro-electronics Large die attach, adhesion to GaAs devices, ceramic substrate attach to housing.
 - Fiber Optic Packaging Substrate attach of optical bench; TECooler attach; good adhesion to Au, Kovar and ceramic; can be used for laser diode and photo-diode attach.
 - Liquid Crystal Displays die-attach micro-LCDs onto flex circuits like Kapton, or rigid carriers like FR4, ceramic, or silicon
- Low temperature cure between 80°C and 150°C allows use on lower cost plastics and temperature sensitive devices.
- Can be suggested as a lower stress, more resilient alternative of EPO-TEK® 930-4.